Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.044
Filtrar
1.
Zoolog Sci ; 41(2): 141-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587909

RESUMO

The silkworm Bombyx mori exhibits a photoperiodic response (PR) for embryonic diapause induction. This article provides a comprehensive review of literature on the silkworm PR, starting from early works on population to recent studies uncovering the molecular mechanism. Makita Kogure (1933) conducted extensive research on the PR, presenting a pioneering paper on insect photoperiodism. In the 1970s and 80s, artificial diets were developed, and the influence of nutrition on PR was well documented. The photoperiodic photoreceptor has been investigated from organ to molecular level in the silkworm. Culture experiments demonstrated that the photoperiodic induction can be programmed in an isolated brain (Br)-subesophageal ganglion (SG) complex with corpora cardiaca (CC)-corpora allata (CA). The requirement of dietary vitamin A for PR suggests the involvement of opsin pigment in the photoperiodic reception, and a cDNA encoding an opsin (Boceropsin) was cloned from the brain. The effector system concerning the production and secretion of diapause hormone (DH) has also been extensively investigated in the silkworm. DH is produced in a pair of posterior cells of SG, transported to CC by nervi corporis cardiaci, and ultimately released into the hemolymph. Possible involvement of GABAergic and corazonin (Crz) signal pathways was suggested in the control of DH secretion. Knockout (KO) experiments of GABA transporter (GAT) and circadian clock genes demonstrated that GAT plays a crucial role in PR through circadian control. A model outlining the PR mechanism, from maternal photoperiodic light reception to DH secretion, has been proposed.


Assuntos
Bombyx , Diapausa de Inseto , Diapausa , Animais , Bombyx/metabolismo , DNA Complementar , Gânglios , Opsinas/metabolismo
2.
Biomolecules ; 14(3)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540692

RESUMO

Recent studies have suggested that ABC transporters are the main receptors of Cry toxins. However, the receptors of many Cry toxins have not been identified. In this study, we used a heterologous cell expression system to identify Bombyx mori ABC transporter subfamily C members (BmABCCs) that function as receptors for five Cry toxins active in Lepidopteran insects: Cry1Aa, Cry1Ca, Cry1Da, Cry8Ca, and Cry9Aa. All five Cry toxins can use multiple ABCCs as low-efficiency receptors, which induce cytotoxicity only at high concentrations. Surface plasmon resonance analysis revealed that the KD values between the toxins and BmABCC1 and BmABCC4 were 10-5 to 10-9 M, suggesting binding affinities 8- to 10,000-fold lower than those between Cry1Aa and BmABCC2, which are susceptibility-determining receptors for Cry1Aa. Bioassays in BmABCC-knockout silkworm strains showed that these low-efficiency receptors are not involved in sensitivity to Cry toxins. The findings suggest that each family of Cry toxins uses multiple BmABCCs as low-efficiency receptors in the insect midgut based on the promiscuous binding of their receptor-binding regions. Each Cry toxin seems to have evolved to utilize one or several ABC transporters as susceptibility-determining receptors.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Toxinas de Bacillus thuringiensis , Bombyx , Proteínas Hemolisinas , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bombyx/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Endotoxinas , Insetos/metabolismo , Proteínas de Bactérias/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542400

RESUMO

Bombyx mori was domesticated from Bombyx mandarina. The long-term domestication of the silkworm has brought about many remarkable changes to its body size and cocoon shell weight. However, the molecular mechanism underlying the improvement in the economic characteristics of this species during domestication remains unclear. In this study, we found that a transposable element (TE)-Bm1-was present in the upstream regulatory region of the Mlx (Max-like protein X) gene in wild silkworms but not in all domesticated silkworms. The absence of Bm1 caused an increase in the promoter activity and mRNA content of Mlx. Mlx and its partner Mondo belong to the bHLHZ transcription factors family and regulate nutrient metabolism. RNAi of Mlx and Mondo decreased the expression and promoter activity of glucose metabolism-related genes (trehalose transport (Tret), phosphofructokinase (PFK), and pyruvate kinase (PK)), lipogenic genes (Acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS)), and glutamine synthesis gene (Glutamine synthase 2, (GS2)). Furthermore, the transgenic overexpression of Mlx and Mondo in the fat body of silkworms increased the larval body size, cocoon shell weight, and egg number, but the silencing of the two genes resulted in the opposite phenotypes. Our results reveal the molecular mechanism of Mlx selection during domestication and its successful use in the molecular breeding of Bombyx mori.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Larva/genética , Domesticação , Glutamina/metabolismo , Tamanho Corporal
4.
Int J Biol Macromol ; 264(Pt 2): 130842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484820

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , Genes Virais , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
J Nanobiotechnology ; 22(1): 111, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486273

RESUMO

Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.


Assuntos
Bombyx , Lesões Encefálicas Traumáticas , Fibroínas , Células-Tronco Mesenquimais , Células-Tronco Neurais , Nitritos , Elementos de Transição , Ratos , Animais , Fibroínas/metabolismo , Fibroínas/farmacologia , Bombyx/metabolismo , Hidrogéis/farmacologia , Neurônios/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
6.
Cell Mol Life Sci ; 81(1): 127, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472536

RESUMO

Reproduction, a fundamental feature of all known life, closely correlates with energy homeostasis. The control of synthesizing and mobilizing lipids are dynamic and well-organized processes to distribute lipid resources across tissues or generations. However, how lipid homeostasis is precisely coordinated during insect reproductive development is poorly understood. Here we describe the relations between energy metabolism and reproduction in the silkworm, Bombyx mori, a lepidopteran model insect, by using CRISPR/Cas9-mediated mutation analysis and comprehensively functional investigation on two major lipid lipases of Brummer (BmBmm) and hormone-sensitive lipase (BmHsl), and the sterol regulatory element binding protein (BmSrebp). BmBmm is a crucial regulator of lipolysis to maintain female fecundity by regulating the triglyceride (TG) storage among the midgut, the fat body, and the ovary. Lipidomics analysis reveals that defective lipolysis of females influences the composition of TG and other membrane lipids in the BmBmm mutant embryos. In contrast, BmHsl mediates embryonic development by controlling sterol metabolism rather than TG metabolism. Transcriptome analysis unveils that BmBmm deficiency significantly improves the expression of lipid synthesis-related genes including BmSrebp in the fat body. Subsequently, we identify BmSrebp as a key regulator of lipid accumulation in oocytes, which promotes oogenesis and cooperates with BmBmm to support the metabolic requirements of oocyte production. In summary, lipid homeostasis plays a vital role in supporting female reproductive success in silkworms.


Assuntos
Bombyx , Animais , Feminino , Bombyx/genética , Bombyx/metabolismo , Oogênese , Ovário , Desenvolvimento Embrionário , Lipídeos , Proteínas de Insetos/metabolismo
7.
Arch Insect Biochem Physiol ; 115(2): e22093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409870

RESUMO

Toll, immune deficiency and prophenoloxidase cascade represent vital immune signaling pathways in insects. Peptidoglycan recognition proteins (PGRPs) are innate immune receptors that activate and regulate the immune signaling pathways. Previously, we reported that BmPGPR-L4 was induced in the silkworm Bombyx mori larvae by bacteria and peptidoglycan challenges. Here, we focused on the function of BmPGRP-L4 in regulating the expression of antimicrobial peptides (AMPs). The hemolymph from BmPGRP-L4-silenced larvae exhibited an enhanced inhibitory effect on the growth of Escherichia coli, either by growth curve or inhibitory zone experiments. Coincidentally, most of the AMP genes were upregulated after RNAi of BmPGRP-L4. Oral administration of heat-inactivated E. coli and Staphylococcus aureus after RNAi of BmPGRP-L4 resulted in the increased expression of BmPGRP-L4 in different tissues of the silkworm larvae, revealing an auto-regulatory mechanism. By contrast, the expression of most AMP genes was downregulated by oral bacterial administration after RNAi of BmPGRP-L4. The above results demonstrate that BmPGRP-L4 recognizes bacterial pathogen-associated molecular patterns and negatively regulates AMP expression to achieve immunological homeostasis. As a negative regulator, BmPGPR-L4 is proposed to be involved in the feedback regulation of the immune signaling pathways of the silkworm to prevent excessive activation of the immune response.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Imunidade Humoral , Escherichia coli , Bactérias/metabolismo , Proteínas de Insetos/metabolismo , Larva
8.
Protein Expr Purif ; 218: 106450, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395208

RESUMO

A new coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the global pandemic of COVID-19 in 2020. Through structural analysis, it was found that several amino acid residues in the human angiotensin-converting enzyme-2 (hACE2) receptor directly interact with those in the receptor binding domain (RBD) of the spike glycoprotein (S-protein). Various cell lines, including HEK293, HeLa cells, and the baculovirus expression vector system (BEVS) with the insect cell line Sf9, have been utilized to produce the RBD. In this study, we investigated the use of Bombyx mori nucleopolyhedrovirus (BmNPV) and BEVS. For efficient production of a highly pure recombinant RBD protein, we designed it with two tags (His tag and STREP tag) at the C-terminus and a solubilizing tag (SUMO) at the N-terminus. After expressing the protein using BmNPV and silkworm and purifying it with a HisTrap excel column, the eluted protein was digested with SUMO protease and further purified using a Strep-Tactin Superflow column. As a result, we obtained the RBD as a monomer with a yield of 2.6 mg/10 mL serum (equivalent to 30 silkworms). The RBD showed an affinity for the hACE2 receptor. Additionally, the RBDs from the Alpha, Beta, Gamma, Delta, and Omicron variants were expressed and purified using the same protocol. It was found that the RBD from the Alpha, Beta, Gamma, and Delta variants could be obtained with yields of 1.4-2.6 mg/10 mL serum and had an affinity to the hACE2 receptor.


Assuntos
Bombyx , COVID-19 , Nucleopoliedrovírus , Animais , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Bombyx/genética , Bombyx/metabolismo , Células HeLa , Células HEK293 , Proteínas Recombinantes , Ligação Proteica
9.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339188

RESUMO

The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Seda/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
10.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338437

RESUMO

This study aimed to isolate the proteolytic fraction from the silkworm thorn fruit (Cudrania tricuspidata) through ethanol precipitation at different ratios, and to determine its proteolytic activity and optimal activity conditions. Furthermore, the hydrolysis characteristics and antioxidant activity of soy protein isolate (SPI) and whey protein concentrate (WPC) hydrolyzates obtained through the enzymatic hydrolysis of freeze-dried silkworm thorn fruit powder (SF) were evaluated. For isolation and partial purification of proteolytic fraction, the water-solubilized fraction of the silkworm thorn fruit was purified through ethanol precipitation at four different ratios of 1:1, 1:2, 1:4, and 1:6 (v/v). The protein recovery rate, caseinolytic activity, protein pattern, and optimal activity (pH, temperature, and inhibitors) of fractional ethanol precipitate obtained from the silkworm thorn fruit (ESF) were evaluated. The proteolytic fraction obtained from silkworm thorn fruit exhibited a major protein band around 65-70 kDa and showed the highest proteolytic activity at a 1:4 ratio of ethanol precipitation (p < 0.05). The optimal activity of the measured enzyme fraction was determined to be at pH 9.0 and 50 °C, and the proteolytic activity of ESF was almost inhibited by phenyl methyl sulphonyl fluoride (PMSF, 2 mM), a serine protease inhibitor. Compared to Alcalase and papain, extensively used as commercial enzymes, the silkworm thorn fruit powder was less effective in hydrolyzing SPI and WPC. Nevertheless, SPI and WPC hydrolyzates mediated with silkworm thorn fruit powder showed even better antioxidant activities than those mediated with Alcalase and papain. Thus, our results show the potential application of silkworm thorn fruit as a novel source of plant protease for producing human-grade protein hydrolyzates.


Assuntos
Bombyx , Maclura , Animais , Humanos , Hidrólise , Bombyx/metabolismo , Papaína/metabolismo , Frutas/metabolismo , Pós , Peptídeo Hidrolases/metabolismo , Proteínas do Soro do Leite , Proteínas de Soja , Subtilisinas/metabolismo , Etanol
11.
J Insect Physiol ; 154: 104628, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387524

RESUMO

Herbivorous insects can identify their host plants by sensing plant secondary metabolites as chemical cues. We previously reported the two-factor host acceptance system of the silkworm Bombyx mori larvae. The chemosensory neurons in the maxillary palp (MP) of the larvae detect mulberry secondary metabolites, chlorogenic acid (CGA), and isoquercetin (ISQ), with ultrahigh sensitivity, for host plant recognition and feeding initiation. Nevertheless, the molecular basis for the ultrasensitive sensing of these compounds remains unknown. In this study, we demonstrated that two gustatory receptors (Grs), BmGr6 and BmGr9, are responsible for sensing the mulberry compounds with attomolar sensitivity for host plant recognition by silkworm larvae. Calcium imaging assay using cultured cells expressing the silkworm putative sugar receptors (BmGr4-10) revealed that BmGr6 and BmGr9 serve as receptors for CGA and ISQ with attomolar sensitivity in human embryonic kidney 293T cells. CRISPR/Cas9-mediated knockout (KO) of BmGr6 and BmGr9 resulted in a low probability of making a test bite of the mulberry leaves, suggesting that they lost the ability to recognize host leaves. Electrophysiological recordings showed that the loss of host recognition ability in the Gr-KO strains was due to a drastic decrease in MP sensitivity toward ISQ in BmGr6-KO larvae and toward CGA and ISQ in BmGr9-KO larvae. Our findings have revealed that the two Grs, previously considered to be sugar receptors, are molecules responsible for detecting plant phenolics in host plant recognition.


Assuntos
Bombyx , Humanos , Animais , Larva/fisiologia , Bombyx/metabolismo , Plantas , Paladar/fisiologia , Açúcares/metabolismo , Folhas de Planta/metabolismo
12.
Protein Sci ; 33(3): e4907, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38380732

RESUMO

Understanding how native silk spinning occurs is crucial for designing artificial spinning systems. One often overlooked factor in Bombyx mori is the secretion of sericin proteins. Herein, we investigate the variation in amino acid content at different locations in the middle silk gland (MSG) of B. mori. This variation corresponds to an increase in sericin content when moving towards the anterior region of the MSG, while the posterior region predominantly contains fibroin. We estimate the mass ratio of sericin to fibroin to be ~25/75 wt% in the anterior MSG, depending on the fitting method. Then, we demonstrate that the improvement in the extensional behavior of the silk dope in the MSG correlates with the increase in sericin content. The addition of sericin may decrease the viscosity of the silk dope, a factor associated with an increase in the spinnability of silk. We further discuss whether this effect could also result from other known physicochemical changes within the MSG.


Assuntos
Bombyx , Fibroínas , Sericinas , Animais , Seda/química , Seda/metabolismo , Bombyx/química , Bombyx/metabolismo , Sericinas/química , Sericinas/metabolismo , Fibroínas/química , Fibroínas/metabolismo
13.
Insect Biochem Mol Biol ; 167: 104075, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278280

RESUMO

Uric acid is the end-product of nitrogen metabolism of the silkworm and other lepidopterans. The accumulation of uric acid particles in the epidermis causes the larval silkworm to appear white and opaque. However, the mechanism of uric acid granule formation is still unclear. Silkworm epidermis color is linked to the genes responsible for uric acid particle formation. We first identified two genes in the Bombyx mori genome that encode subunits of the Bloc-1 (Biogenesis of Lysosome-related Organelles Complex-1) by homology to these genes in other eukaryotes, Bmpali and Bmb1. Mutation in these genes caused a transparent phenotype in the silkworm larvae, and the loss of BmBloc-1 subunit gene Bmcap resulted in the same phenotype. These three genes are highly conserved between human and silkworm. We discovered that Bmpali, Bmcap, and Bmb1 localize in the cytoplasm of BmN cells. Yeast two-hybrid assays demonstrated that the Bmpali physically interacts with both Bmcap and Bmb1. Investigating the roles of Bmpali, Bmb1, and Bmcap is essential for uric acid granule formation understanding in Bombyx mori. These mutants present a valuable silkworm model for studying the biogenesis of lysosome-related organelles (LROs).


Assuntos
Bombyx , Animais , Humanos , Bombyx/genética , Bombyx/metabolismo , Ácido Úrico/metabolismo , Larva/genética , Larva/metabolismo , Epiderme , Mutação
14.
Int J Biol Macromol ; 261(Pt 2): 129778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296126

RESUMO

Serine proteases possess various biological functions. The serine protease p37k exhibits gelatinolytic activity in the silkworm midgut and degrades cuticular proteins in the molting fluid. In this study, we analyzed the activity changes of recombinant p37k (re-p37k) and p37k in the midgut and molting fluid of Bombyx mori. Firstly, in vitro-expressed re-p37k was activated when a 22 kDa band was observed by western blot. Re-p37k exhibits strong gelatinolytic activity, with the highest activity observed at pH 7.0-9.0 and 45 °C. Compared to p37k in the midgut, re-p37k loses thermal stability but can be restored by midgut extract or ions. E64, AEBSF, and an inhibitor cocktail inhibited the hydrolytic activity of re-p37k on epidermal proteins but did not inhibit the gelatinolytic activity. Subsequently, zymography showed that the positions of gelatinolytic band produced by p37k in the midgut and molting fluid were different, 35 kDa and 40 kDa, respectively. Finally, when heated midgut extract was added to re-p37k or molting fluid, the gelatinolytic band shifted from 40 kDa to 35 kDa, and the proteolytic activity of p37k in the molting fluid was inhibited. Collectively, our results demonstrate that p37k exhibits different activities in various tissues, suggesting its distinct tissue-specific functions during insect metamorphosis.


Assuntos
Bombyx , Muda , Animais , Serina Proteases/metabolismo , Bombyx/metabolismo , Larva/metabolismo , Serina Endopeptidases/metabolismo , Proteínas de Insetos/metabolismo
15.
Proc Biol Sci ; 291(2015): 20232578, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38228178

RESUMO

In the silkmoth Bombyx mori, the role of male sensilla trichodea in pheromone detection is well established. Here we study the corresponding female sensilla, which contain two olfactory sensory neurons (OSNs) and come in two lengths, each representing a single physiological type. Only OSNs in medium trichoids respond to the scent of mulberry, the silkworm's exclusive host plant, and are more sensitive in mated females, suggesting a role in oviposition. In long trichoids, one OSN is tuned to (+)-linalool and the other to benzaldehyde and isovaleric acid, both odours emitted by silkworm faeces. While the significance of (+)-linalool detection remains unclear, isovaleric acid repels mated females and may therefore play a role in avoiding crowded oviposition sites. When we examined the underlying molecular components of neurons in female trichoids, we found non-canonical co-expression of Ir8a, the co-receptor for acid responses, and ORco, the co-receptor of odorant receptors, in long trichoids, and the unexpected expression of a specific odorant receptor in both trichoid sensillum types. In addition to elucidating the function of female trichoids, our results suggest that some accepted organizational principles of the insect olfactory system may not apply to the predominant sensilla on the antenna of female B. mori.


Assuntos
Monoterpenos Acíclicos , Bombyx , Hemiterpenos , Neurônios Receptores Olfatórios , Ácidos Pentanoicos , Receptores Odorantes , Animais , Feminino , Bombyx/metabolismo , Sensilas/fisiologia , Olfato , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Feromônios/metabolismo
16.
Int J Biol Macromol ; 259(Pt 2): 129077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199542

RESUMO

Plant-derived miRNAs and their interactions with host organisms are considered important factors in regulating host physiological processes. In this study, we investigated the interaction between the silkworm, an oligophagous insect, and its primary food source, mulberry, to determine whether mulberry-derived miRNAs can penetrate silkworm cells and regulate their functions. Our results demonstrated that miR168a from mulberry leaves enters the silkworm hemolymph and binds to the silkworm Argonaute1 BmAGO1, which is transported via vesicles secreted by silkworm cells to exert its regulatory functions. In vivo and in vitro functional studies revealed that miR168a targets the mRNA of silkworm G protein-coupled receptor, BmMthl1, thereby inhibiting its expression and activating the JNK-FoxO pathway. This activation reduces oxidative stress responses, prolongs the lifespan of silkworms, and improves their reproductive capacity. These findings highlight the challenges of replacing mulberry leaves with alternative protein sources and provide a foundation for developing silkworm germplasms suitable for factory rearing.


Assuntos
Bombyx , MicroRNAs , Morus , Animais , Bombyx/metabolismo , Morus/genética , Morus/química , Frutas , MicroRNAs/genética , MicroRNAs/metabolismo , Fertilidade/genética
17.
PLoS Genet ; 20(1): e1011118, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232119

RESUMO

Quercetin is a common plant flavonoid which is involved in herbivore-plant interactions. Mulberry silkworms (domestic silkworm, Bombyx mori, and wild silkworm, Bombyx mandarina) take up quercetin from mulberry leaves and accumulate the metabolites in the cocoon, thereby improving its protective properties. Here we identified a glycoside hydrolase, named glycoside hydrolase family 1 group G 5 (GH1G5), which is expressed in the midgut and is involved in quercetin metabolism in the domestic silkworm. Our results suggest that this enzyme mediates quercetin uptake by deglycosylating the three primary quercetin glycosides present in mulberry leaf: rutin, quercetin-3-O-malonylglucoside, and quercetin-3-O-glucoside. Despite being located in an unstable genomic region that has undergone frequent structural changes in the evolution of Lepidoptera, GH1G5 has retained its hydrolytic activity, suggesting quercetin uptake has adaptive significance for mulberry silkworms. GH1G5 is also important in breeding: defective mutations which result in discoloration of the cocoon and increased silk yield are homozygously conserved in 27 of the 32 Japanese white-cocoon domestic silkworm strains and 12 of the 30 Chinese ones we investigated.


Assuntos
Bombyx , Quercetina , Animais , Coelhos , Quercetina/química , Quercetina/metabolismo , Bombyx/genética , Bombyx/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Melhoramento Vegetal , Flavonoides/química , Flavonoides/metabolismo
18.
Arch Insect Biochem Physiol ; 115(1): e22076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288490

RESUMO

In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.


Assuntos
Bombyx , Ecdisona , Animais , Bombyx/metabolismo , Montagem e Desmontagem da Cromatina , Pupa/genética , Pupa/metabolismo , Código das Histonas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Metamorfose Biológica/fisiologia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
19.
Arch Insect Biochem Physiol ; 115(1): e22083, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288495

RESUMO

Due to the high prevalence of diabetes mellitus, researchers have conducted numerous experimental animal studies. However, the mammalian diabetes model is cumbersome and expensive to operate, while the cheap and simple common silkworm diabetes model has the disadvantage of a short cycle time. Since the growth of silkworms is greatly affected by environmental factors, we extended the five-age cycle of silkworms by lowering the ambient temperature to establish a novel low-temperature silkworm diabetes model. Our goal was to determine whether the low-temperature feeding of a high-sugar diet to silkworms could serve as an effective animal model for diabetes. Also, we aimed to resolve certain issues concerning the normal temperature silkworm diabetes model, such as the short time frame for experiments and erratic fluctuations in blood sugar levels. Silkworms weighing between 0.9 and 1.0 g at the beginning of the fifth instar were selected, and we created diabetic silkworms by feeding mulberry leaves containing 4% glucose daily in a 16-20°C environment. When the silkworms were kept at a cooler temperature, the fifth instar stage lasted for an additional 9-11 days. In the model group, 83.3% of the silkworms had blood glucose levels greater than 7.8 mmol/L, while the total prevalence of diabetic silkworms was 89.8%. Moreover, JNK phosphorylation expression rose in the model group, while PI3K expression fell. Additionally, the JNK and PI3K signaling pathway expressions matched diabetic signals. Therefore, using silkworms to create a diabetes model in a cool environment is a straightforward and cost-effective approach to studying diabetes in animals.


Assuntos
Bombyx , Diabetes Mellitus , Morus , Animais , Bombyx/metabolismo , Temperatura , Fosfatidilinositol 3-Quinases/metabolismo , Mamíferos
20.
Insect Sci ; 31(1): 47-58, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37368860

RESUMO

Metamorphosis is a complex developmental process involving multiple pathways and a large number of genes that are regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Despite important progress in understanding various aspects of silkworm biology, the hormone signaling pathway in the silkworm remains poorly understood. Genome-wide screening using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-based libraries has recently emerged as a novel method for analyzing genome function, enabling further research into essential genes, drug targets, and virus-host interaction. Previously, we constructed a genome-wide CRISPR/Cas9-based library of the silkworm (Bombyx mori) and successfully revealed the genes involved in biotic or abiotic stress factor responses. In this study, we used our silkworm CRISPR library and large-scale genome-wide screening to analyze the key genes in the silkworm 20E signaling pathway and their mechanisms of action. Functional annotation showed that 20E regulates key proteins in processes that mainly occur in the cytoplasm and nucleus. Pathway enrichment analysis showed that 20E can activate phosphorylation and may affect innate immunity, interfere with intracellular nutrition and energy metabolism, and eventually cause cell apoptosis. The screening results were experimentally validated by generating cells with knockout alleles of the relevant genes, which had increased tolerance to 20E. Our findings provide a panoramic overview of signaling in response to 20E in the silkworm, underscoring the utility of genome-wide CRISPR mutant libraries in deciphering hormone signaling pathways and the mechanisms that regulate metamorphosis in insects.


Assuntos
Bombyx , Ecdisterona , Animais , Ecdisterona/metabolismo , Bombyx/metabolismo , Metamorfose Biológica/genética , Hormônios Juvenis/metabolismo , Transdução de Sinais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...